
We start from the axiom of completeness of R.
Axiom of completeness.
Suppose A ⊂ R is nonempty, bounded above. Then, there is α ∈ R satisfying
both (i),(ii)

(i) α ≥ x ∀x ∈ A.

(ii) if β ≥ x ∀x ∈ A, then α ≤ β.

By trichotomy of R, such α is unique and denoted by supA, called the supre-
mum of A.

Remark. For a nonempty bounded below set A ⊂ R, one can define infimum
of A similarly. It turns out, inf A = − sup(−A).

Monotone convergence theorem is a direct consequence of this axiom.
Monotone Convergence Theorem.
Every monotone increasing, bounded above sequence is convergent.

Proof. Let (xn) be such a sequence and A := {xn : n ∈ N}. Let α := supA.
We aim to show that (xn) converges to α. Let ε > 0. Since α− ε cannot be an
upper bound, there is N ∈ N such that xN > α − ε. Since (xn) is increasing,
xn > α − ε for all n > N . Since α is an upper bound, α − ε < xn ≤ α for all
n > N . Therefore, |xn − α| < ε for all n > N .

Remark. For a monotone decreasing, bounded below sequence (xn), it con-
verges to − limn→∞−xn, where the limit of (−xn) is guaranteed by the Mono-
tone convergence theorem.

Digression.
Existence of a monotone subsequence.
Every sequence admits a monotone subsequence.

Proof. Let (xn) be a sequence. We say that xn is a peak if xk ≤ xn for all
k ≥ n. Here we distinguish xn1

, xn2
whenever n1 6= n2.

We divide it into two cases. First case: (xn) has infinitely many peaks. Second
case: (xn) has finitely many peaks.
Case 1:
Let n1 := min{n ∈ N : xn is a peak } and nk := min{n > nk−1 : xn is a peak }
for k ≥ 2. By assumption, {n > nk−1 : xn is a peak } 6= ∅ for each k ≥ 2, hence
nk is well-defined by well-ordering principle of N. Since nk > nk−1 for each
k ≥ 2, (xnk

) is a subsequence of (xn). It is decreasing.
Case 2:
By assumption, there is N ∈ N such that xn is not a peak whenever n ≥ N .
Let n1 := N and nk := min{n > nk−1 : xn > xnk−1

} for k ≥ 2. Since xnk−1

is not a peak, {n > nk−1 : xn > xnk−1
} 6= ∅ and nk is well-defined. (xnk

) is a
subsequence of (xn), which is increasing.
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Remark. By Monotone convergence theorem and Existence of a monotone
subsequence, every bounded sequence admits a convergent subsequence, which
is Bolzano-Weierstrass Theorem.

Nested Interval Theorem.
Suppose (Ik) is a sequence of nondegenerate closed and bounded intervals, such
that Ik+1 ⊂ Ik for all k ∈ N. Then,

(i) ∩∞k=1Ik 6= ∅

(ii) If |Ik| → 0 as k →∞, then ∩∞k=1Ik = {ξ} for some ξ ∈ R.

Proof. Write Ik = [ak, bk] with ak < bk for each k ∈ N. Since (ak) is an
increasing sequence bounded by b1, it converges, say to a. Next, we show that
a ∈ ∩∞k=1Ik. Fix N ∈ N. Since a = supk∈N ak, a ≥ aN . On the other hand,
am < bm ≤ bN for every m ≥ N , therefore, a = limk→∞ ak ≤ bN . These show
a ∈ IN for any N ∈ N. That is, a ∈ ∩∞k=1Ik. This shows (i).
Let x, y ∈ ∩∞k=1Ik. |x − y| ≤ bk − ak = |Ik| for every k ∈ N. Letting k → ∞,
|x− y| = 0. This shows (ii).

Remark. Let a := limk→∞ ak, b := limk→∞ bk. Then, ∩∞k=1Ik = [a, b].

[0, 1] is uncountable.

Proof applying Nested interval theorem. Suppose not, let {r1, r2, ...} be an enu-
meration of [0, 1]. Divide [0, 1] into three closed intervals, each has length 1

3 and
each pair intersects at most one point. Let I1 be an interval such that r1 /∈ I1.
Divide I1 into three closed intervals, each has length 1

32 and each pair intersects
at most one point. Let I2 be an interval such that r2 /∈ I2. Continuing the
process, one admits a sequence of closed intervals (Ik) such that Ik+1 ⊂ Ik,
rk /∈ Ik and |Ik| = 1

3k
for each k. By Nested interval theorem (ii), ∩∞k=1Ik = {ξ}

for some ξ ∈ [0, 1]. Since ξ ∈ Ik for each k, ξ 6= rk for all k and hence ξ /∈ [0, 1].
Contradiction. There cannot be an enumeration of [0, 1].

Second proof. Suppose not, let {r1, r2, ...} be an enumeration of [0, 1]. For each
k ∈ N, let 0.ak1ak2ak3... be a decimal representation of rk. A number in [0, 1]
admits two decimal representations only if it admits a terminal 0 decimal rep-
resentation. Let

bk :=

{
3 if akk ≥ 5
7 if akk < 5

b := 0.b1b2b3... ∈ [0, 1] admits a unique decimal representation, but for each
k ∈ N, bk 6= akk. Therefore, b 6= rk and b /∈ [0, 1]. Contradiction arises. There
cannot be an enumeration of [0, 1].

Next, we show Bolzano-Weierstrass Theorem from Nested Interval Theorem.
Bolzano-Weierstrass Theorem.
Every bounded sequence admits a convergent subsequence.
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Proof. Let (an) be a bounded nonconstant sequence. Let a := infn∈N an and
b := supn∈N an. Divide [a, b] into two closed intervals with equal length and let
I1 to be one of these two intervals such that an ∈ I1 for infinitely many n ∈ N.
Divide I1 into two closed intervals with equal length and let I2 to be one of
these two intervals such that an ∈ I2 for infinitely many n ∈ N. Continuing the
process, one admits a sequence of closed intervals (Ik) such that for each k ∈ N,

(1) Ik+1 ⊂ Ik

(2) |Ik| = b−a
2k

(3) an ∈ Ik for infinitely many n ∈ N

By Nested interval theorem (ii), there is ξ ∈ R such that ∩∞k=1Ik = {ξ}. By (3),
one can define n1 := min{n ∈ N : an ∈ I1} and nk := min{n > nk−1 : an ∈ Ik}
for k ≥ 2. The subsequence (ank

) converges to ξ.

Proposition 1: If (an) converges to L, then every subsequence (ank
)

converges to L.

Proposition 2: (an) converges to L iff every subsequence (ank
) ad-

mits a subsequence (ankj
) converging to L.

Proof of the sufficiency of Proposition 2. Suppose (an) does not converge to L.
By definition, there is ε > 0 such that given any N ∈ N, |an − L| ≥ ε for some
n ≥ N . Hence, n1 := min{n ∈ N : |an − L| ≥ ε} and nk := min{n > nk−1 :
|an−L| ≥ ε} are well-defined. The subsequence (ank

) satisfying |ank
−L| ≥ ε for

each k, admits no subsequence converging to L. Proved by contrapositive.

Bolzano-Weierstrass can show a generalized nested interval theorem, saying
If (Fk) is a sequence of nonempty closed and bounded sets such that Fk+1 ⊂ Fk
for every k ∈ N, then

(i) ∩∞k=1Fk 6= ∅

(ii) If diam(Fk) := sup{|x−y| : x, y ∈ Fk} → 0 as k →∞, then ∩∞k=1Fk = {ξ}
for some ξ ∈ R.

Here, we adopt the definition that F is said to be closed if given any convergent
sequence in F , its limit is also in F .

Proof. Pick ak ∈ Fk. Since F1 is a bounded set, by Bolzano-Weierstrass
theorem, (ak) admits a subsequence (ank

) converging to L. We show that
L ∈ ∩∞k=1Fk. Fix any N ∈ N, for k ≥ N , ank

∈ Fnk
⊂ Fk ⊂ FN . Since FN is

closed, L ∈ FN . Hence, L ∈ ∩∞k=1Fk and (i) is shown. Proof of (ii) is similar to
the proof of nested interval theorem (ii).
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An important application of Bolzano-Weierstrass theorem is to show the
Cauchy criterion.

Cauchy Criteria.
(an) is convergent iff (an) is Cauchy.

Definition. (an) is said to be Cauchy if for every ε > 0, there is N ∈ N such
that |an − am| < ε for every n,m ≥ N .
Equivalently, for every ε > 0, there is N ∈ N such that |an+p−an| < ε for every
n ≥ N and p ∈ N.
That is, limn→∞ supp∈N|an+p − an| = 0.

Proof of sufficiency of Cauchy criteria. Let (an) be a Cauchy sequence. We
show the following

(i) (an) is bounded

(ii) (an) admits a convergent subsequence

(iii) If a Cauchy sequence admits a convergent subsequence, then it converges
to its subsequential limit.

By definition of Cauchy, there is N ∈ N such that |an − am| < 1 for every
n,m ≥ N . Therefore, |an| ≤ max{|a1|, |a2|, ..., |aN−1|, |aN |+ 1} for every n ∈ N
and this shows (i). (ii) follows from (i) and Bolzano-Weierstrass theorem. For
(iii),

Suppose (ank
) is a subsequence of (an), converging to L. Let ε > 0.

(a) There is N ∈ N such that |an − am| < ε
2 for every n,m ≥ N .

(b) There is K ∈ N such that |ank
− L| < ε

2 for every k ≥ K.

Let p := max{N,K}. Since np ≥ p ≥ N , from (a), we have |an − anp
| < ε

2 for
every n ≥ N .
Since p ≥ K, from (b), we have |anp

−L| < ε
2 . By triangle inequality, |an−L| < ε

for every n ≥ N . This shows (iii) and the theorem follows.
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